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Representing and modeling complex systems
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Comin, C. H.; Peron, T. K. DM.; Silva, F. N.; Amancio, D. R.; Rodrigues, F. A.; Costa, L. da F. 
Complex systems: features, similarity and connectivity (https://arxiv.org/abs/1606.05400)

Measurements
Node degree

Clustering coefficient
Visualization Topological distance
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Representing and modeling complex systems

Connectivity Features

Informative features for nodes?

Global vs local measurements
Dependence with the size of networks is not desirable

Visualization
Classification
Modeling
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Concentric levels and properties

COSTA, L. da F.; SILVA, F. N. Hierarchical characterization of complex networks. 
 Journal of Statistical Physics, v. 125, n. 4, p. 845–876, 2006. 

Balance between local and global measurements
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Viana, M. P.; Batista, J. a. L. B. and Costa, L. da F. 
Effective number of accessed nodes in complex networks. Phys. Rev. E, v. 85, p. 036105, 2012.
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aA(h) ⇡ 1.12aA(h) ⇡ 1ai(r) = eEi(r)
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Accessibility

Good to detect borders on geographic networks
Travençolo, B. A., Viana, M. P., & da Fontoura Costa, L. (2009) 

Border detection in complex networks. New Journal of Physics, 11(6), 063019.

Accessibility

Node degree

Figures from:



11

Accessibility

Good to detect borders on geographic networks
Travençolo, B. A., Viana, M. P., & da Fontoura Costa, L. (2009) 

Border detection in complex networks. New Journal of Physics, 11(6), 063019.

Accessibility

Betweenness Centrality

Figures from:
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Accessibility

Good to detect borders on geographic networks
Travençolo, B. A., Viana, M. P., & da Fontoura Costa, L. (2009) 

Border detection in complex networks. New Journal of Physics, 11(6), 063019.

Accessibility

Average shortest path length

Figures from:
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Accessibility

Good to detect borders on geographic networks

Betweenness centralityAccessibility ( r=3 ) 



Accessibility ( r=3 ) 
14
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Concentric symmetry
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Results

Voronoi

Random GeographicERCities 
(Oldenburg)

WaxmanRewired Voronoi Airports

BA Wikipedia

http://cyvision.ifsc.usp.br/software/networks3d
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Concentric Symmetry Results

F.N. Silva, C.H. Comin, T.K.DM. Peron, F.A. Rodrigues, C.Ye, R.C. Wilson, E. Hancock, L. da F. Costa 
Concentric network symmetry. Information Sciences, v. 333, p. 61 – 80, 2015. doi: 10.1016/j.ins.2015.11.014. 
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Concentric Symmetry Results
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San Joaquin (matrix similar to Oldenburg) Wikipedia (matrix similar to airport)

F.N. Silva, C.H. Comin, T.K.DM. Peron, F.A. Rodrigues, C.Ye, R.C. Wilson, E. Hancock, L. da F. Costa 
Concentric network symmetry. Information Sciences, v. 333, p. 61 – 80, 2015. doi: 10.1016/j.ins.2015.11.014. 
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Concentric Symmetry Results
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F.N. Silva, C.H. Comin, T.K.DM. Peron, F.A. Rodrigues, C.Ye, R.C. Wilson, E. Hancock, L. da F. Costa 
Concentric network symmetry. Information Sciences, v. 333, p. 61 – 80, 2015. doi: 10.1016/j.ins.2015.11.014. 

Concentric symmetry Traditional measurements
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Concentric Symmetry Results
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High Symmetry Low Symmetry

• Concentric symmetries 

• Do not correlate with traditional network measurements. 

• Discriminate between a diverse range of models and real networks. 

• Can be used to rank networks by their "average" symmetry.

F.N. Silva, C.H. Comin, T.K.DM. Peron, F.A. Rodrigues, C.Ye, R.C. Wilson, E. Hancock, L. da F. Costa 
Concentric network symmetry. Information Sciences, v. 333, p. 61 – 80, 2015. doi: 10.1016/j.ins.2015.11.014. 
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Evaluating symmetry

Comin, C. H., Silva, F. N., & Costa, L. D. F. (2015). 
A framework for evaluating complex networks measurements. EPL (Europhysics Letters), 110(6), 68002.

Cesar H. Comin et al.

The discriminability of a measurement is important for
the classification of the entities in the sense that entities
of the same type result in similar measurement values.

In order to quantify the aforementioned aspects, we de-
fine the measurement evenness and exclusion properties.
A measurement that has high evenness value is more uni-
formly distributed over the measurement regions. In cases
when the measurement needs to be binned, the enhanced
uniformity will promote a more effective use of the bins.
Contrariwise, a less uniformly distributed measurement
would require adaptive binning such that smaller bins are
allocated to the higher-density regions, which is difficult
to achieve in practice. In addition, a more uniform mea-
surement will be more robust to noise and perturbations
affecting the mapping of the entities in the measurement
space. For instance, several real-world data are incom-
pletely sampled. This is achieved because a more uniform
distribution of points will tend to occupy the space more
effectively, avoiding gaps and therefore providing a larger
average distance between adjacent pairs of points. This is
illustrated in fig. 1. If the magnitude of noise σ1 and σ2

at each axis is as shown in fig. 1, the results in fig. 1(a)
will be completely undermined at the higher-density re-
gion, while the distribution of points in fig. 1(b) would be
much less affected.

A measurement that can correctly represent the entities
of the system must also be sensitive to differences between
the types of entities under analyses. For this task, we de-
fine the exclusion property, which quantifies the mixing of
different classes of data in the measurement space. There-
fore, in this work, the requirement of having high evenness,
implying having a more uniform distribution of points,
and high exclusion allows for better binning, robustness
to perturbation and noise and better discriminability of
the data.

We will develop the aforementioned ideas using com-
plex networks as the set of entities under analysis. The
area of complex networks [1,2] has grown steadily since
its origin in 1999, mainly as a consequence of its ability to
represent virtually any discrete system [3]. Basically, these
networks are graphs exhibiting a topological organization
which departs from a randomly uniform network such as
that of Erdős-Rényi [2], which acts as a “simple” reference.
The study of complex networks involves the estimation of
several measurements, such as the degree, clustering co-
efficient, and betweenness centrality. Basically, network
measurements can be classified as being global, such as
the node degree distribution, or local, referring to small
parts of the network. Thus, the topological properties
around each node are mapped into a set of values, allow-
ing a comprehensive approach to determining the aspects
that are similar or different between two or more networks.
However, because of the three problems identified in the
previous paragraph, this approach requires good-quality
measurements. This corresponds to the objective of the
present work, i.e. we propose a framework for assessing
the quality of different sets of node-centered measurements
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Fig. 2: (Color online) Steps of the proposed methodology.
(a) PCA projection of the original data. (b) The typical mea-
surement values for each class, shown as shaded regions, are
obtained. (c) The Voronoi tessellation is applied to all regions
together and (d) to each region individually, and used to de-
fine the evenness measurement. (e) The overlapping points
between the regions are obtained, and used in the exclusion
measurement.

of complex networks with respect to effective resolution,
degree of degeneracy, and discriminability.

Methodology. – The first step in our methodology is
to define a set of node-centered measurements that will be
used to characterize the networks. Such measurements are
calculated over connectivity patterns along the neighbor-
hood of nodes [4], where a l-th neighborhood is defined as
the set of nodes that are at a topological distance l from a
reference node. The subgraph spanned by the first r neigh-
borhoods of a node is henceforth called the r-pattern of
the node. We note that, depending on the network type
and on its average degree, the r-pattern of nodes can span
the entire network even for small values of r. Neverthe-
less, such patterns will still be usually distinct one another
since they have a hierarchical structure, composed by the
successive neighborhoods of the reference node.

The following steps can be applied to the original hyper-
dimensional space composed by a large number of node-
centered measurements. Nevertheless, in order to provide
a visual interpretation of the methodology, and to reduce
its computational cost, we apply the Principal Compo-
nent Analysis (PCA) [5] on the data. Using PCA, we can
project the original measurements into a 2D space, com-
posed by the first two principal components. In fig. 2(a)
we show an example of such 2D space, where patterns are
represented by points projected on the first two principal
components obtained from a set of node-centered mea-
surements. Patterns are colored according to the network
they belong to.

If the r-patterns of two given nodes are the same, no
measurement will be able to differentiate the two nodes.
Therefore, in order to quantify the potential of a set of
measurements to characterize networks, we need to take
into account identical patterns, so that they will be con-
sidered only once. This is done by finding isomorphic
patterns between all nodes contained in the projection,

68002-p2
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Evaluating symmetry

Comin, C. H., Silva, F. N., & Costa, L. D. F. (2015). 
A framework for evaluating complex networks measurements. EPL (Europhysics Letters), 110(6), 68002.

Cesar H. Comin et al.

Fig. 3: (Color online) Results of each step of the methodology for the concentric (first row) and symmetry (second row)
measurement sets.

Table 1: Number of nodes, N , and average degree, 〈k〉, of the
networks used in the main paper. Key references describing
the networks are indicated in the last column.

Network N 〈k〉 Ref.
Airports 2940 20.9 [10]

BA 5000 6.00 [1]
ER 5000 6.07 [2]

GEO 4964 5.77 [11]
Oldenburg 2873 2.64 [12]

San Joaquin 14503 2.77 [12]
RVOR 5000 5.99 [10]
VOR 5000 5.99 [11,13]
WAX 5000 6.04 [11,14]

Wikipedia 45876 11.77 [10]

having adjacent Voronoi cells are connected, thus defin-
ing a Voronoi network. The rewired Voronoi model is de-
fined by applying a random rewiring of a Voronoi network,
were the probability of rewiring is 0.001. It is important
to note that the six models differ mainly by the spatial
constraints imposed on the network creation. While the
ER and BA models have no spatial constraints, the WAX,
GEO, RVOR and VOR models have progressively stricter
constraints in the allowed number of crossing between net-
work edges. The four real-world networks are the World-
Wide Airport network (Airport), the Wikipedia and the
street networks of the city of Oldenburg (Oldenburg) and
the county of San Joaquin (San Joaquin).

Since the networks have a markedly distinct number
of nodes, we randomly selected Ns = 2000 nodes from

each network, so that they all have the same relevance in
the PCA. We verified that applying the PCA to differ-
ent sets of randomly selected nodes represented unnotice-
able changes to the results. Two sets of measurements
were used to characterize the neighborhoods of nodes,
namely concentric measurements [4,15] and symmetry
measurements [10]. Concentric measurements are simple
statistics of the neighborhood of nodes, such as the num-
ber of nodes at the i-th neighborhood or the number of
edges between successive neighborhoods of a node. They
are related to many traditional measurements in the net-
work theory, as described in [10]. Symmetry measure-
ments quantify the topological symmetry of the nodes
neighborhoods. They correspond to a normalization of
the accessibility measurement [8] and have been found to
provide a rich description of the topological structure of
networks [10].

Starting with the concentric measurements, in fig. 3(a)
we show the PCA projection of all concentric measure-
ments presented in [4], for the 0-, 1-, 2-, 3- and 4-th neigh-
borhoods. It is clear that most of the network models
became concentrated in a small region, around the ori-
gin of the axes. Only the Airport and Wiki networks
contain nodes having more distinct values of PCA1 and
PCA2, although the 2D space is still poorly occupied by
the two networks. The main reason for this behavior is
that the concentric measurements present different scales
depending on the network characteristics. For the Airport
and Wiki, which are highly heterogeneous networks, these
measurements show markedly distinct values, which is an
indication of a good measurement according to our crite-
ria. But all other networks are poorly characterized by the

68002-p4
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Other uses of concentric symmetry performed by collaborators

Amancio DR (2015) A Complex Network Approach to Stylometry. 
PLOS ONE 10(8): e0136076. https://doi.org/10.1371/journal.pone.0136076

Arruda, H. F., Costa, L.da F. and Amancio, D.R., (2016) 
Using complex networks for text classification: Discriminating informative and imaginative documents. 
EPL (Europhysics Letters), 113(2), p.28007. https://doi.org/10.1209/0295-5075/113/28007

Authors

Contributions

Analyzed data

Collected data

Conceived experiments

Performed experiment

Wrote paper

Revised manuscript

2nd author

1st author

3rd author

Characterizing authors contributions

https://doi.org/10.1371/journal.pone.0136076
https://doi.org/10.1209/0295-5075/113/28007


Current interests

25



COSTA, L. da F. et al. 
Analyzing and modeling real-world phenomena with complex networks: a survey of applications 
Advances in Physics, v. 60, n. 3, p. 329--412, 2011.


COSTA, L. da F.; SILVA, F. N. 
Hierarchical characterization of complex networks 
Journal of Statistical Physics, v. 125, n. 4, p. 845–876, 2006. 


COSTA, L. da F.; TOGNETTI, M. A. R.; SILVA, F. N. 
Concentric characterization and classification of complex network nodes: Application to an institutional collaboration network 
Physica A, v. 387, n. 24, p. 6201--6214, 2008.


SILVA, F.N.; COMIN, C.H.; PERON, T.K.DM.; RODRIGUES, F.A.; Ye, C.; WILSON, R.C.; HANCOCK, E.; COSTA, L. da F.  
Concentric network symmetry 
Information Sciences, v. 333, p. 61 – 80, 2015.


COMIN, C. H.; SILVA, F. N.; COSTA, L. da F. 
A framework for evaluating complex networks measurements. 
EPL (Europhysics Letters), 110(6), 68002, 2015.


AMANCIO, D. R.; SILVA, F. N.; COSTA, L. da F. 
Concentric network symmetry grasps authors' styles in word adjacency networks 
EPL (Europhysics Letters). Volume 110, Issue 6, 68001, 2015.


http://cyvision.ifsc.usp.br/software/networks3d

Thanks!

References

filipinascimento@gmail.com

mailto:filipinascimento@gmail.com

